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Microphase separation transition of random copolymers in a random media

Andrey V. Dobrynin
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
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We study the microphase separation transition of symmétBaandom copolymers in a gel with prefer-
ential adsorption ofA monomers on the gel strands. It is shown that random copolymers in a gel are an
example of the random field model. In the framework of the second Legendre transformation we have calcu-
lated the free energy and the phase diagram of the system. There are three different regimes on the phase
diagram: the disordered-liquidlike phase, the replica symmetry breaking regime with broken replica symmetry
for the two-replica correlation function where monomer composition fluctuations are pinned to the region with
higher concentration of the cross links, and the ordered phase with short-range translational order.
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[. INTRODUCTION tion. In fact, this temperature changes linearly with the num-
ber of defects. The behavior of the system changes
Numerous theoretical studies in recent years have beedframatically when the number of defects becomes so high
devoted to the phase transition phenomena in copolymer sy$hat we can no longer find long-range correlations between
tems. Copolymers are macro-molecules consisting of two omonomers along a chain. This change is manifested in the
more different monomer units or monomer blocks randomlyshift of the critical wave numbeg, to the region of small
or regularly distributed along the polymer chains. The distri-q. This peak will remain atj=0 for strongly frustrated sys-
bution of the monomers both along the chains and betweetems [9-16]. The instability of the homogeneous state at
different chains was fixed during the polymerization processzeroth wave numbers suggests that the system undergoes a
[1]. The simplest example of copolymers is diblock copoly-macrophase separation into pkeandB phases. The above
mers that consist of two different blocks, and B, with n statement is the result of the mean-field arguments. The fluc-
andm monomers, respectively. With decreasing temperaturéuation analysis of phase transitions in random copolymers
the diblock copolymers with repulsive interaction betweenshow that the fluctuation corrections to the mean field are
A andB monomers undergo a microphase separation transitery importanf12,14,16. These corrections lead to the mi-
tion. This transition is caused by the instability of the homo-crophase separation transition instead of a macrophase one.
geneous state of the system with respect to composition fluckhe characteristic length scale of critical fluctuations above
tuations with the finite wave numbey, . This instability is  the phase transition and the period of the domain structure
due to a competition of the two effects: a short-rangebelow it are extremely sensitive to the variation of the tem-
monomer-monomer interaction that tends to reduced theerature[10—16. One should note that these length scales
number of unfavorable contacts between different sorts ofould be as small as the bond size if there is no correlation
monomers and long-range entropic forces caused by thieetween different types of monomers along polymer chains.
presence of the chemical bonds linking two blocks togetherThe symmetry of the domain structure appearing under cool-
Depending on the temperature, composit{fmaction of the  ing is determined by the composition of the random copoly-
monomers of different sorts on the chginand chemical mers. For example, below the microphase separation transi-
structure of copolymersthe way different blocks connect tion the symmetric random copolymers with an equal
together into a polymer chaimne can observe one-, two-, or number ofA andB monomers will self-organize into lamel-
three-dimensional domain structuf@s-7]. The first stage of lar domains.
the domain pattern formation, when the amplitude of com- One can think about another type of frustration of a block
position fluctuations between different domains is still smallcopolymer system: putting block copolymers into a gel with
in comparison to its average value, can be described in term@eferential adsorption of one sort of monomer on the gel
of the Landau-Brazovskieffective Hamiltoniar{8]. The or-  strands. This random distribution of the attractive centers
der parameter for this Hamiltonian is the deviation of thedestroys the translational invariance of the system. It was
local concentrations of monomers from their average conpointed out by de Gennd47] that the interaction between
centrations. mixtures and a gel can be modeled by the effective random
If we start to introduce defectérustrationg into a chemi-  fields with statistical characteristics dependent on the distri-
cal structure of the block copolymers, for example, randomlybution of cross links of a gel and fixed during the polymer-
choosing the monomers iA and B blocks and switching ization of the gel. The behavior of the diblock copolymers in
them, after repeating this procedure many times we will ara gel was considered by Stepan@wal. [18]. They have
rive at an uncorrelated distribution of the monomers alonghown that the presence of the gel leads to the decrease of
the polymer chains. These copolymers are calleddom the temperature of the microphase separation transition at
copolymerg 9—16]. The presence of a small amount of de- very weak adsorption energy. Below the microphase separa-
fects slightly decreases the temperature of the phase trangien transition the random fields acting on the domains pre-

1063-651X/97/561)/7508)/$10.00 56 750 © 1997 The American Physical Society



56 MICROPHASE SEPARATION TRANSITION OF RANDM . . . 751

vent the formation of the long-range modulated order andadiusR,=al"/46"2of the blocks of lengt containing only

result in the formation of highly anisotropic translational in- one sort of monomers. The paramedeis equal to the bond

coherent microstructures. At some intermediate concentraize. The parameterg,\ in this normalization are propor-

tions of cross links the fluctuations of copolymer composi-tional tol/pR3~|*1/2_ One should note that the cubic term is

tion are pinned to the regions with higher concentration ofabsent in the effective Hamiltonian only for the symmetric

the cross links. In this regime the properties of the systemandom copolymer systems with an equal numbeAaind

become dependent on the preparation conditions of the g& monomers.

matrix. If the random copolymers are immersed into the gel ma-
The interesting emerging question is how different wouldtrix, we have to modify the effective Hamiltoniafl) by

the behavior of the system be with two types of quenchedntroducing the term linear in the gel monomer density

disorder(i.e., with a random distribution of monomers along pg(d). This term describes the interaction between the gel
polymer chains and with a random spatial distribution ofand random copolymers

attractive centey® To answer this question we have ana-
lyzed the phase behavior of random copolymers in a gel. \/ﬁ

The paper is organized in the following way. In Sec. lwe  Hint(#/(d).pg(d))= R U(ea_eb)f P(AQ)pg(—a), (2
formulate the problem in terms of the effective Hamiltonian g a

and demonstrate that the interaction between gel and randofjhere the parametees are the strength of the gél-and gel-
copolymers can be reduced to the effective external randof§ monomers interactions measured in urki and the pa-

field acting on the monomers. Using the technique of therameter\/H/Rg’z appears to be due to the normalization of

second Legendre transformatiptB—23, the free energy Of.. the order parametep(q). One of the characteristics of the

tth i i i ith tt Y ypolymer network is the presence of quenched inhomogene-
otthe replica Ssymmetric solution with respect fo replica sym-;e ¢ ot the densitypd'(q) [23]. This quenched disorder is

metry breaking. Section IV presents the study of the Stabilitydue to the statistical nature of the cross-linking process. For

of the lamellar phase exposed to the external random field. | is reason the Fourier component of the density fluctuation

Sec. V we discuss the results and the phase diagram of ran- b d f
dom copolymers in a gel. pg(d) can be represented as a sum of two terms

pg(Q)=pg () +pg(a), )

wherepg"(q) is the annealed density fluctuations. The corre-

The order paramete(r) for the symmetricAB random  |ation function of the annealed density fluctuations has the
copolymer melt containing the same amount/fand B well-known form

monomers is the local composition fluctuationsfofnono-

mers with respect to the composition Bf monomersys(r) <pgf’(q)pg”(q)>=[Gfl(q)_vxg]*ly (4)
=pa(r)—pp(r), wherep,(r) andp,(r) are the local con-

centrations ofA and B monomers at the point, respec- where G~ %(q) is the structuraentropig contribution and
tively. Near the phase transition point, the behavior of they x, is the energetic one. The correlator of the quenched
AB melt can be described in terms of the Landau expansiodensity fluctuations is more complicated,

of the free energy in powers of the Fourier component of the

IIl. MODEL AND EFFECTIVE HAMILTONIAN

normalized order parameter (q)=[pa(q) —pp(Q)]/ A Qe v(q)
(leg)lIZ’ C(Q)—<Pg (Q)Pg (q)>_ [1+U)(9G(q)]2, (5)
1 ) where the functiorw(q) depends on the preparation condi-
Ho(y(a)=5 f g+ ) g(q)(—q) tions of the gel[23]. The structural factor of the gel is the
q sum of quenched and annealed parts
4 4
L AZ
+ > ) a |1 w(ap =1y -1 L
24 aJaJazas \i=1 izt I S(q)=[G"(q) UXg] +[1+UX9G(Q)]2. (6)
b ¢(q1)¢(_q;)¢(22) ¥~ d2) , We can estimate the correlation functigsy,(—a) pg(q)) as
8V JogyJa, 01+ 02 Noe/R3eN(a,) [17] if the characteristic length scalk
(1) =2/q, of the composition fluctuationg(q) is of the order

of the gel mesh siz&g, whereNgy is the number of gel
where we introduced the notatig— fd®a/(2m)3 A andk ~ monomers between cross links amd, ) is a number of the
are the fourth-order vertex functions that can be calculate@rder of unity. In the general cadRye is proportional to
from the microscopic characteristics of the systeifi—15. Ngfel, whered; is the fractal dimension of the gel strand. For
7=pvl(xy— x) is the effective temperatur is the Flory- rigid rodsd;=1 and for Gaussian chaim= 2.
Huggins parameter ang, is its value at the phase transition  In order to average the free energy of the system
point andv is the excluded volume assumed to be the same
for all types of interactions in the systerandp is the aver-
age monomer density of the orderwf? for the melt. In Eq. F=—=In f Dy(a)exd —Ho((a)— Him(w(q)’pg(q))])

(1) the wave numbersg) were normalized by the gyration (7)
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over all distributions of the quenched density fluctuations of The average value of the order parametér,(q)) is

the gel pg”(q) we will use the replica approadi24]. One equal to zero above the microphase separation transition. A
considersn copies of the same system, averages over th&eplica symmetric solution for the renormalized two-replica
whole distribution of the quenched disorder, and then takesorrelation functionG,4(q) can be written as a sum of two

the limit n—0, terms

. exp—Fp—1 Gap()=09(a) Sapt () (1= 6,4p), (13
(FYa=—lm —, (8) _ )
n—0 n whereg(q) andf(q) are functions to be defined below. Sub-

stituting the functionG,4(q) given by Eq.(13) into the

whereF,, is then-replica free energy right-hand side(rhs) of the Eq.(12) and taking the varia-
tional derivative of then-replica free energy with respect to
F.=—In f H Dz,/;a(q)exp{ _2 Ho(llfa(Q))) IiL:)r:]cStlonsg(q) andf(q), one can write the system of equa-
5Fn _ f -1 f(Q) A -1
X ( expl =2 Hin(¥a(a),pg(a)) 5g(q)——[g(q)— ()] T gt =tz A% (q)
av.
+3,,=0
ae 14)
——n| [ TT Du@ext—How. @], © (
(l;lt/fqp[ndfq] 5, ‘@

5t~ fo(@—f(qp2 A >«s=0

where Eaazz[ 5Sn(GaB 1<lr//a>)/5g(q)] and za,ﬁ’
=2[6Sy(Gap (¥a))6T(a)]. In the one-loop(Hartree ap-
proximation the systenl4) reduces to the form

with H,(¢,(q)) being then-replica effective Hamiltonian

A
Ho(@)= 3 Holbal @)~ 5 3, [ vatayt-a),
(10)
-1_ -1 A g(ql)
where the parameteﬁ%pvzl(ea—eb)z(Née/Rgel)h(q*) [g(q)_ f(q)] _gO (CI)+ E fqlg(ql)+ E a m;
was introduced. In order to calculate thereplica free en-
ergy of the system under consideration (15

f(a)=A[g(a)—f(a)]>

eXK—Fn)=J IT Dy(@exd —Ha(Wa(@)] (1D To solve Eq.(15 we will use a trial function method and
“ choose the functioig(q)—f(qg)]~! in the form ggl(q)
we will use the technique of the second Legendre transfor=C(lal —a,)?+r  [12,1416  where the parameters

mation[18—22. Then-replica free energy in the framework C,'r,q* have _to be found self-consistently. Substitution of
of this approach can be written as the functional of the bardhiS trial function into the rhs of E¢15) results in the equa-

vertices\ and k, the average value of the composition fluc- tion
tuations{,(q)) in the ath replica, and the renormalized ) )
two-replica correlation functio,,45(q), C(|q| - g, )2+ r=g%+ 7+ A Gy + KOy 1
* 47\Cr 4m\Cr q’+a
Fo=—13 Tr{In G p(q)]+3 2 wa(q)gal(q) A
@ Jq x| 1+ —|. (16)
2r
A
-3 aEﬁ quaﬁ(Q)Hn(Wa))stn(Gaﬁ Wa)), Expanding the rhs of this equation in the Taylor series in the

powers of|q|—q, , we can self-consistently define the pa-
(12 rametersC,r,q, as

whereg,* is the bare propagatag?+ 7, Hn((¥,)) is the Cc=2, (17a
value of the effective Hamiltoniar(10) at the function
¥.(q) being equal to(#,(qd)), and Sy(G,p.(#,)) is the , SK A
sum of two irreducible diagrams that cannot be separated q*:W 1+ z}, (17b
into two independent parts by removing any two lines. One
should note that only the diagrams with the numbers of loops )
larger than the number of vertices contribute to the free en- r= E kS A kS A

, L =7+4 1+ +3 1+—|, (@179
ergy of the system in the thermodynamic lirkit->~ due to Jrr 2r Jr 2r

the additional factor 3/ in front of the term in the effective

Hamiltonian with vertexc. There is only one diagram in the where the numerical constast=1/167v2 was introduced.
sumS,(G,z.(#,)) that has the vertex to the first power ~The analysis of the systef17) shows that the value of the
[12,14,14. critical wave numbeig, in the case of the strong random
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field (A/r>1) is proportional taA/r®2. In order to find the In the case of the strong random fieffz>1 the last Eq.
temperature dependence we have to substitufe (20) of the system(20) can be simplified
~\«ks?A?/|7| into Eq. (17b), which gives the value of the
critical wave numberg?~ \/(«/\)[7]. In the other limit
| 7|~ ks/r the characteristic length scale of the critical fluc-
tuatlonsL~q*1 is inversely proportional to the square root The solution of Eq.(21) appears atz~3"5"2 for
of the effective temperature \;W 1/4) o1/2y 3/4 S1/4, 9 ,.1/411/2y 3/4 25 ;

To simplify the analysis of the syste(@7) it is useful to K~ /S" A6 "<1 and atze~[(3(«™"7s"A"7) 8]°" if the
introduce the reduced variables such asr/syk\, & opposite inequality holds. Here we will be interested only in

— A/sykN, andt=1/s\kX. In these variables we can write the first case. Substituting the solutiap~ 3452 into Eq.
(21), one can obtain the critical temperature or spinodal of

the ordered phase

2 3 ks

_t:Z+?+§ST2)\—3/ZZT§. (21)

2 K1/4 S
t=z— = [1+ 0| —3———|1+-|. (19
z 27 1/2y 3/4 27 4
Sz te~— 53 82 @2)
The parametek¥/s*2\%* is proportional tolY4 and de-

Note that the precise analysis of the phase transition between
the ordered and the disordered phases shows that the tem-
perature of the first-order phase transition has the same
power dependence on the paramétes the critical tempera-

pending on the length of the blockither the second or the
third term gives the main contribution at smalbn the rhs of
Eq. (18). The fluctuations stabilize the disordered state for all

effective temperatures as can be seen from (&8). How- turet.. To conclude our analysis of the phase transition in

ever, the absence of the instability does not preclude thﬁ1 .
) i L . e random copolymer systems in a gel we have to check the
existence of a first-order phase transition into a domain struc-

ture with a period of the order of length scale In order to stability of the replica symmetric solution.
decide whether such a transition may occur we have to cal-
culate the free energy of the ordered state.

The ordered phase is characterized by a nonzero average

value of the order parametéy,(q)) that describes average . o . . .
composition fluctuations in the domains. In the weak segre- To consider the stability of the replica symmetric solution

gation limit, for a lamellar domain structure with amplitude we have to ex_pan_d the free energy of the system in powers of
A and periodL =27/q, oriented along the axis the aver- 9Qap(d), which is a small perturbation over the replica

lll. STABILITY OF THE REPLICA SYMMETRIC
SOLUTION

age value of the order parameter has the form symmetric part of the two-replica correlation function
G,5(0) [see Eq(13)] and check the sign of the quadratic in
(o)) =A[8(0,— 0y )+ 8(q,+a, )] (19 the perturbation term. In this approximation the two-replica
a z * z * .

correlation function can be written in the form

Repeatipg the above calculations for the ordered phase, one Gop(@)=0s(q) 8,5+ AQB(Q)ZGIYGBJF 8Q.5(q), (23)
can derive the system of equations
wheree is the unit vector(1,1,...,2 of dimensionn. Substi-
C=2, tuting this functionG ,4(q) into rhs of Eq.(12) and expand-
ing it in powers of the matrix’Q,z(q) one can find

Sk A K \V; S A
q;—05 —= |1+ 5| —5-r=0 AF,=— f(—w -2 ele )5Q (q)9Q..(q)
oLl 2r 2 20 "4 Jq\ga(@)? “ga(q) ) TEer VTR
)\2
p2=2" —7f”6Qaﬁ(p>aQaﬁ(k>f<q)f(q—k—p)}
N aJkJp
(24)
o o : ) where on the rhs we have assumed the summation over all
A R | R R A R repeated indices and have neglected terms of the order of
n2. The form of the perturbationQ,4(q) can be found by

o analyzing the Dyson equation for the off-diagonal part of the
1/4 1+ 27 two-replica correlation function. One can easily see that the

+3 172, 374 fluctuations with|g| =g, give the main contribution to this
Vz function, so at the zeroth-order approximation the function
8Q,5(q) can be chosen in the form

/ 8Qap(q)=Qapds(q)?, (25)
3/2
+ z » ) whereQ,; is thenXxn matrix with elements satisfying the
1+i n \/ 1+£ 1252 symmetry r.elationEaQaBﬁEyQ,/.&. Aft_er introducing the
2z 2z Parisi function[25] q(x) defined in the interval0,1],
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) . 1 S o >(\3¥8s¥4x1/8) 413 the spinodal temperaturk,, decreases
0! (xjdx= ,|1|Lno n(n—1) 33 Qap V K (28 gagter tsp~ — 6'%?) than the temperature of the first-order
phase tran3|t|omtr~ - &%2,

the quadratic part of the free energy in the powers of the
matrix Q,, can be rewritten as IV. RANDOM COPOLYMERS BELOW THE MICROPHASE

SEPARATION TRANSITION

AF=—! jlj1[(I1—I3)6(x—y)+lz]q(x)q(y)dx dy!, In this section we consider the stability of the domain
oJo structure below the microphase separation transition. Let the

27 layers at the point in the domain structure undergo a fluc-
tuation displacement(r) in the z direction. If the fluctua-

where we have defined tionsu(r) vary only slightly over distances of the order of a

2 layer spacing-~1/g, , the changes in composition at each
— | 42— ~312 28 point in space may be regarded as the result of a shift of the
1= | 9a(aq) re (28) .
q 4m\C layers by an amount equal to the local fluctuation of the
displacementi(r). The fluctuating composition is then writ-
= msgeg NAZGSr 29
TB17207 M AT
p(r)=2A coqq,[z+u(r)]}. (36)

3 ) Substituting this formula for the order parameter into the
ZAJ ga(q)=——= 87JC qzAr %2 (30)  effective Hamiltoniar(10), one can derive the coarse-grained
effective Hamiltonian for the fields(r),

The replica symmetric solutiofi3) is unstable in the region K
of the parameters where the matrix £ |3) 8(x—y)+1, has H{u.(r}= 8
a negative eigenvalue

A4
7 (Z fr{[Ax,yuamz

A_=1;+1,—15<0. (31 +4qi[Vzua(r)]2})

In terms of the variableA andr expression(31) becomes

—;B Afr cos{q,[u,(r)—ug(r)]},
(37)

Equation (32) determines the spinodal line of the replica where the first term on the rhs describes the deformation of
symmetric solution with respect to replica symmetry break-the lamellar layers and the second one couples this deforma-
ing. In the dimensionless variables this equation can be reion in different replicas. It is interesting to note that the
written as cosinelike coupling term between fluctuations of the order
parameter in two different replicas appears in disordered
physical systems such as an array of flux line in type-Il su-
perconducting film in magnetic fiel26], a crystalline sur-
face with a disordered substrd&7], random fieldX'Y model

In the case of the weak random fie#iz<1 the second term [28], and copolymers in a g¢lL8]. In all these systems the

1

3A A2 A?
as )o

2T Ganc2 (32)

3/2
<0. (33

348 )\3/8 52
-1+ 5 o g | 1t o

on the rhs of Eq(32) can be neglected, leading to cosine term results in a break of the long-range order and in
the spontaneous replica symmetry breakiag,30.
3B 4/2168’21 N8| In the framework of the Gaussian variational principle
Zsp™ | g3, T8 o= 8534, 1B (34 [31,30 the contribution to the free energy of the system due

to fluctuations of the displacemenj(r) in different replicas
Extrapolating Eq. (320 to large 6, 6&/z=1, or § s
> (A 388534k 1/8) 413 one can obtain

e e s Foa= — 1T1 fq IN{Gas(@)]+ (H{ua( @} —Hoo,
Zsp™~ ( 2M/3 s3/4K1/8> 510/23' 6> ( 8s 3/4 178) (38)

(35 where we defined

In order to find the effective temperature of the phase tran- 1 1

sition these values of the renormalized effective temperature Ho= 5% f Gap (A)Ua(Q)Up(—q) (39
zg, have to be substituted into expression f(z) given by

Eqg. (21). An analysis of this equation shows that the msta-andGab(q) is the two replica trial function whose form has
bility of the replica symmetric solution can only occur at theto be found self-consistently. The), denotes the thermal
intermediate values of the external random fiéldThis is  averaging with the weight exp(Hg). After thermal averag-
due to the fact that for strong random field§ ing the variational free energy reads
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=T inGa(@)+ 150 (65 @

. a%
_Gabl(Q)]Gab(q)_l;a AAaAb ex;{ - 7 Bab) )
(40)

where

Bap= L[Gaa(OI) +Gpp(d) ~ Gan(d) —Gpa(@)]  (42)

and the inverse bare propagat@, Yq) is (A2/2)[(q§
+02)%2+4q92q?], where we substituté\®= kA*/2q%. The

trial function G,,(q) can be found from the equations

2
*

. - q
Gaa(@)=Go () +2 2, AdyAsA, exp( - Bab> :
(42)

2
*

_ q
Gabl(Q) == ZAqi AAp ex;{ - 7 Bab) . (43

Analyzing Eg. (43) one can conclude that the function

G;bl(q) does not depend on wave numlggfor a#b. So we

can defineG;bl(q)= — o, (@#Db). In the case of the one-

755

for a,be off-diagonal blocksmXxXm. Substitution of the
solution (47)—(49) for the trial functionG,(q) into varia-
tional free energy yieldg30]

1
fya= lim n [Fuadt) —Fya(0)]
n—0
VA2g2
4

1
(1—5 nt+Y’(1—m)t"}, (50)
where Y'=2Y/A%2q} =4A/q2 is introduced. The equilib-
rium values of the parametens andt can be found from the
system of equations

1
7 = Y'=0, (51)

+Y'(1-m)t7 1=0. (52)

( 1

1_ J—
m

For »>1 this system has only a trivial solutiom=1, t

=0 that corresponds to the replica symmetric solution with

all off-diagonal elements of the matri3,,(q) equal to zero.

The nontrivial solution appears foy<1, which reads

m= 7, (53

t=(Y' )Y, (54

step replica symmetry breaking for which the elements of the

matrix o, are assumed to have two different valugsand
o, depending on whether or not the two indicesand b
belong to the same blocks of lengthy, one can rewrite the
equationgsee for detail§30])

o1=Y exp(7 Int), (44)

1
oo=Y ex;{r;lnt—a@r]ln Lg,+t7int)|, (45

wherel is the linear size of the system and we introduced
the following parameters assumiig to be the same in the

all replicas and equdh:

_ Ox _ m(o-l_O-O) _ 2 A2
ﬂ—m, t—ZW, Y—ZAq*A . (46)
In the limit Lg,>1 Eq. (45 gives 0g=0. Therefore, the
trial function G,,(q) is

1 0'1

G = — + — — ,

20 = G () +moy | GgHQ)[Gy Hq)+ mery]
(47)
Gan(@) = 7 (48)

4= G )Gy Aq) + moy]
for a,b e diagonal blockamxm, and

Gap(q)=0 (49

In other words, aty=1 the system undergoes a phase tran-
sition for which the correlation functio®,,(q) change its
form.

To complete the analysis we now calculate the correlation
function ((r)¢(r’)) in the ordered phase below the phase
transition (p<1). Due to fluctuations of the displacement
u(r) the correlation function is

(W(r)g(r'))y=A? cogq, (z—2')]
2
><exp( - q7* ([u(r)=u(r"1®»|, (55

with

([U(r)—U(r’)]2>=2L{1—COS{QU—r’)]}<U(Q)u(—CI))-
(56)

Substituting expression for the correlatdu(q)u(—q)),
which is given by the diagonal pa47) of the two-replica
correlation function, one can write

([u(z)—u(z')1?

2 [(A=mpInt+2Inz=2'|q, for |z-2'|&*>1
"2 |29 Injz—2'|q, for |z-2Z'|¢ <1

(57)

for |x, —x||=0 and

(Lu(x)—u(x{)1%)
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-30.00 = Y(a)=G(q)h(q). (59

DIS In order for the domain structure to be distinguished from

- these background statistical fluctuations, the amplitude of the
composition fluctuations between different domairs

~ | 7|/\ has to be larger than the statistical fluctuations of

+40.00 RSB the order parameter
A
2\ 2 _ ~
t 7 V(¥%) \/LG (@){h(a)h(=qa)) \/K|T|- (60)

This gives the estimate of the temperature of the first-order
phase transitiofr|~ /A that reproduces the scaling depen-
dence derived in Sec. II.

4 LAM At some intermediate strength of the random figdthe
adsorption energyabove the line of the first-order phase
transition, there is a region of the phase diagram with replica

-50.00 —

60.00 T I T I T T . | symmetry breaking(RSB) for the two-replica correlation
0.00 1.00 2.00 3.00 4.00 function. This means that in this region the pattern of copoly-
o mer composition fluctuations is pinned to the frozen inhomo-

geneity of the gel and the properties of the system become
~ FIG. 1. Phase diagram for the random copolymer melt in the gefjependent on the preparation conditions of the gel. Below
in the variables {,6) at k=A=1. The solid line between the ho- the microphase separation transition there is only short-range
mogeneous statéDIS) and replica symmetry breaking regime ansiational order with correlation lengtis,&,. All our
(RSB) is the spinodal line of the replica symmetric solution for the predictions can be tested by the x-ray scattering experiments.

two-replica correlation function with respect to replica symmetry e hope that this work will stimulate such experiments. It is
breaking. The solid line between the homogeneous state and t . . P -
lamellar phasdLAM ) as well as between the RSB phase and thg?ery interesting to note that qualitatively the phase diagram

lamellar phase is the line of the first-order phase transition. (Fig. 1) looks very S”’T‘"af to that Calculateq by Stepanow
et al. [18] for symmetric diblock copolymers in a gel.

, R Let us comment on the case of asymmetric random co-

_ 2 [(I=mpint+4inx, —x[|a, for |x, =x[|&">1  polymers containing an unequal numberstoind B mono-
g2 |47 In|x, —x]|q, for Ix, —x||& <1 mers. In this case there is a cubic term in the effective
(58  Hamiltonian. As a result, there will be a region on the phase
diagram with three- and two-dimensional domain structures
for |z—z'|=0, where&,q, =t Y2 and £,q, =t~ are the  [34,39. However, the general prediction of the paper is that

correlations lengths in the andx and they directions, re- the breaking of the replica symmetry of the two-replica cor-
spectively. The form of the correlation function shows thatr€lation function will not be affected by the cubic term in the
there are two different regions. Inside the domains of sizéffective Hamiltonian. . .
Ix, —x|| <& and|z—2z'| <&, the system behaves like smec- Recent!y, Panyukov and Rubinstdi®6] havg cqn3|dered_
tic A [32]. For the larger distances the fluctuations of theth® behavior of a network prepared by cross linking the mix-
layer displacement(r) destroy the modulated order, which turé ofA andB chains. This is another way of breaking the
results in the formation of the highly anisotropic translationaltranslational invariance of the system. They have shown that
incoherent microstructures wit/¢,~A~Y4(1=7"_ Thus,in  CrOSS links prevent a mlcrop_hase separation and chains can
random copolymers in a gel there is only short-range trans(-)nly form domains on th_e microscopic length scales of the
lational order with correlation lengths, , , . order of netwqu mesh_5|ze. The physical reason for. such a
phenomenon is the existence of the random stress in a net-
work. These random forces acting on the microstructure de-
V. CONCLUSION stroy the long-range modulated order. The destruction of the
long-range order in the network is different from that dis-

We have considered the behavior of the random COIOOIyf:ussed in the present paper. The quenched random fields are

mers in a gel and havg shown that. this problem can be Mexternal perturbations of the copolymer melts, while the ran-
duced to the random field model with the correlation prop- om forces are intrinsic ingredient of the network

erties of the random field fixed during the process of a gefi Another possible application of our theory is to.the prob-
synthesis. To illustrate our predictions we calculate the phas%mS of the freezing transition of proteins in random media
diagram of the systerfsee F'g'.l As one can see f“’.”.‘ Fig. 37] or the protein adsorption on the substrate with randomly
1 that the temperature of the first-order phase transition fro istributed attractive centef88]. We hope that this paper
the homogeneous state to the lamellar phase decreases wi 0l stimulate work in this direct.ion

increasing strength of the random fiedd This result can be '

understood using simple Imry-Ma argumef®8]. The sta- ACKNOWLEDGMENTS

tistical fluctuations of the random field will produce the com-
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