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Microphase separation transition of random copolymers in a random media

Andrey V. Dobrynin
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290

~Received 3 June 1996!

We study the microphase separation transition of symmetricAB random copolymers in a gel with prefer-
ential adsorption ofA monomers on the gel strands. It is shown that random copolymers in a gel are an
example of the random field model. In the framework of the second Legendre transformation we have calcu-
lated the free energy and the phase diagram of the system. There are three different regimes on the phase
diagram: the disordered-liquidlike phase, the replica symmetry breaking regime with broken replica symmetry
for the two-replica correlation function where monomer composition fluctuations are pinned to the region with
higher concentration of the cross links, and the ordered phase with short-range translational order.
@S1063-651X~97!08507-3#

PACS number~s!: 61.41.1e, 64.60.Cn, 64.60.Kw
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I. INTRODUCTION

Numerous theoretical studies in recent years have b
devoted to the phase transition phenomena in copolymer
tems. Copolymers are macro-molecules consisting of two
more different monomer units or monomer blocks random
or regularly distributed along the polymer chains. The dis
bution of the monomers both along the chains and betw
different chains was fixed during the polymerization proc
@1#. The simplest example of copolymers is diblock copo
mers that consist of two different blocksAn andBm with n
andm monomers, respectively. With decreasing tempera
the diblock copolymers with repulsive interaction betwe
A andB monomers undergo a microphase separation tra
tion. This transition is caused by the instability of the hom
geneous state of the system with respect to composition
tuations with the finite wave numberq* . This instability is
due to a competition of the two effects: a short-ran
monomer-monomer interaction that tends to reduced
number of unfavorable contacts between different sorts
monomers and long-range entropic forces caused by
presence of the chemical bonds linking two blocks togeth
Depending on the temperature, composition~fraction of the
monomers of different sorts on the chains!, and chemical
structure of copolymers~the way different blocks connec
together into a polymer chain! one can observe one-, two-, o
three-dimensional domain structures@2–7#. The first stage of
the domain pattern formation, when the amplitude of co
position fluctuations between different domains is still sm
in comparison to its average value, can be described in te
of theLandau-Brazovskiieffective Hamiltonian@8#. The or-
der parameter for this Hamiltonian is the deviation of t
local concentrations of monomers from their average c
centrations.

If we start to introduce defects~frustrations! into a chemi-
cal structure of the block copolymers, for example, random
choosing the monomers inA and B blocks and switching
them, after repeating this procedure many times we will
rive at an uncorrelated distribution of the monomers alo
the polymer chains. These copolymers are calledrandom
copolymers@9–16#. The presence of a small amount of d
fects slightly decreases the temperature of the phase tr
561063-651X/97/56~1!/750~8!/$10.00
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tion. In fact, this temperature changes linearly with the nu
ber of defects. The behavior of the system chan
dramatically when the number of defects becomes so h
that we can no longer find long-range correlations betw
monomers along a chain. This change is manifested in
shift of the critical wave numberq* to the region of small
q. This peak will remain atq50 for strongly frustrated sys
tems @9–16#. The instability of the homogeneous state
zeroth wave numbers suggests that the system undergo
macrophase separation into pureA andB phases. The above
statement is the result of the mean-field arguments. The fl
tuation analysis of phase transitions in random copolym
show that the fluctuation corrections to the mean field
very important@12,14,16#. These corrections lead to the m
crophase separation transition instead of a macrophase
The characteristic length scale of critical fluctuations abo
the phase transition and the period of the domain struc
below it are extremely sensitive to the variation of the te
perature@10–16#. One should note that these length sca
could be as small as the bond size if there is no correla
between different types of monomers along polymer cha
The symmetry of the domain structure appearing under c
ing is determined by the composition of the random copo
mers. For example, below the microphase separation tra
tion the symmetric random copolymers with an equ
number ofA andB monomers will self-organize into lamel
lar domains.

One can think about another type of frustration of a blo
copolymer system: putting block copolymers into a gel w
preferential adsorption of one sort of monomer on the
strands. This random distribution of the attractive cent
destroys the translational invariance of the system. It w
pointed out by de Gennes@17# that the interaction betwee
mixtures and a gel can be modeled by the effective rand
fields with statistical characteristics dependent on the dis
bution of cross links of a gel and fixed during the polyme
ization of the gel. The behavior of the diblock copolymers
a gel was considered by Stepanowet al. @18#. They have
shown that the presence of the gel leads to the decreas
the temperature of the microphase separation transitio
very weak adsorption energy. Below the microphase sep
tion transition the random fields acting on the domains p
750 © 1997 The American Physical Society
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56 751MICROPHASE SEPARATION TRANSITION OF RANDOM . . .
vent the formation of the long-range modulated order a
result in the formation of highly anisotropic translational i
coherent microstructures. At some intermediate concen
tions of cross links the fluctuations of copolymer compo
tion are pinned to the regions with higher concentration
the cross links. In this regime the properties of the syst
become dependent on the preparation conditions of the
matrix.

The interesting emerging question is how different wou
the behavior of the system be with two types of quench
disorder~i.e., with a random distribution of monomers alon
polymer chains and with a random spatial distribution
attractive centers!? To answer this question we have an
lyzed the phase behavior of random copolymers in a gel

The paper is organized in the following way. In Sec. II w
formulate the problem in terms of the effective Hamiltoni
and demonstrate that the interaction between gel and ran
copolymers can be reduced to the effective external rand
field acting on the monomers. Using the technique of
second Legendre transformation@18–22#, the free energy of
the system is calculated. In Sec. III we consider the stab
of the replica symmetric solution with respect to replica sy
metry breaking. Section IV presents the study of the stab
of the lamellar phase exposed to the external random field
Sec. V we discuss the results and the phase diagram of
dom copolymers in a gel.

II. MODEL AND EFFECTIVE HAMILTONIAN

The order parameterc(r ) for the symmetricAB random
copolymer melt containing the same amount ofA and B
monomers is the local composition fluctuations ofA mono-
mers with respect to the composition ofB monomersc(r )
5ra(r )2rb(r ), wherera(r ) and rb(r ) are the local con-
centrations ofA and B monomers at the pointr , respec-
tively. Near the phase transition point, the behavior of
AB melt can be described in terms of the Landau expans
of the free energy in powers of the Fourier component of
normalized order parameter c(q)5@ra(q)2rb(q)]/
(r lRg

3)1/2,

H0„c~q!…5
1

2 E
q
~q21t!c~q!c~2q!

1
l

24 Eq1Eq2Eq3Eq4dS (i51

4

qi D)
i51

4

c~qi !

1
k

8V E
q1
E
q2

c~q1!c~2q1!c~q2!c~2q2!

q1
21q2

2 ,

~1!

where we introduced the notation*q→*d3q/(2p)3; l andk
are the fourth-order vertex functions that can be calcula
from the microscopic characteristics of the system@10–15#.
t5rv l (x tr2x) is the effective temperature~x is the Flory-
Huggins parameter andx tr is its value at the phase transitio
point andv is the excluded volume assumed to be the sa
for all types of interactions in the system! andr is the aver-
age monomer density of the order ofv21 for the melt. In Eq.
~1! the wave numbersq were normalized by the gyratio
d

a-
-
f
m
el

d

f
-

m
m
e

y
-
y
In
n-

e
n
e

d

e

radiusRg5al1/2/61/2 of the blocks of lengthl containing only
one sort of monomers. The parametera is equal to the bond
size. The parametersk,l in this normalization are propor
tional to l /rRg

3; l21/2. One should note that the cubic term
absent in the effective Hamiltonian only for the symmet
random copolymer systems with an equal number ofA and
B monomers.

If the random copolymers are immersed into the gel m
trix, we have to modify the effective Hamiltonian~1! by
introducing the term linear in the gel monomer dens
rg(q). This term describes the interaction between the
and random copolymers

H int„c~q!,rg~q!…5
Ar l

Rg
3/2 v~ea2eb!E

q
c~q!rg~2q!, ~2!

where the parametersei are the strength of the gel-A and gel-
B monomers interactions measured in unitskT and the pa-
rameterAr l /Rg

3/2 appears to be due to the normalization
the order parameterc(q). One of the characteristics of th
polymer network is the presence of quenched inhomoge
ities of the densityrg

qn(q) @23#. This quenched disorder i
due to the statistical nature of the cross-linking process.
this reason the Fourier component of the density fluctua
rg(q) can be represented as a sum of two terms

rg~q!5rg
qn~q!1rg

an~q!, ~3!

whererg
an(q) is the annealed density fluctuations. The cor

lation function of the annealed density fluctuations has
well-known form

^rg
an~q!rg

an~q!&5@G21~q!2vxg#
21, ~4!

whereG21(q) is the structural~entropic! contribution and
vxg is the energetic one. The correlator of the quench
density fluctuations is more complicated,

C~q!5^rg
qn~q!rg

qn~q!&5
n~q!

@11vxgG~q!#2
, ~5!

where the functionn(q) depends on the preparation cond
tions of the gel@23#. The structural factor of the gel is th
sum of quenched and annealed parts

S~q!5@G21~q!2vxg#
211

n~q!

@11vxgG~q!#2
. ~6!

We can estimate the correlation function^rg(2q)rg(q)& as
Ngel
2 /Rgel

3 h(q* ) @17# if the characteristic length scaleL
52p/q* of the composition fluctuationsc(q) is of the order
of the gel mesh sizeRgel, whereNgel is the number of gel
monomers between cross links andh(q* ) is a number of the
order of unity. In the general caseRgel is proportional to
Ngel
df , wheredf is the fractal dimension of the gel strand. F

rigid rodsdf51 and for Gaussian chainsdf52.
In order to average the free energy of the system

F52 lnS E Dc~q!exp@2H0„c~q!…2H int„c~q!,rg~q!…# D
~7!
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752 56ANDREY V. DOBRYNIN
over all distributions of the quenched density fluctuations
the gelrg

qn(q) we will use the replica approach@24#. One
considersn copies of the same system, averages over
whole distribution of the quenched disorder, and then ta
the limit n→0,

^F&av52 lim
n→0

exp~2Fn!21

n
, ~8!

whereFn is then-replica free energy

Fn52 lnF E )
a

Dca~q!expS 2(
a

H0„ca~q!…D
3K expS 2(

a
H int„ca~q!,rg~q!…D L

av
G

52 lnS E )
a

Dca~q!exp@2Hn„ca~q!…# D , ~9!

with Hn„ca(q)… being then-replica effective Hamiltonian

Hn„ca~q!…5(
a

H0„ca~q!…2
D

2 (
a,b

E
q
ca~q!cb~2q!,

~10!

where the parameterD'rv2l (ea2eb)
2(Ngel

2 /Rgel
3 )h(q* )

was introduced. In order to calculate then-replica free en-
ergy of the system under consideration

exp~2Fn!5E )
a

Dca~q!exp@2Hn„ca~q!…# ~11!

we will use the technique of the second Legendre trans
mation@18–22#. Then-replica free energy in the framewor
of this approach can be written as the functional of the b
verticesl andk, the average value of the composition flu
tuations ^ca(q)& in the ath replica, and the renormalize
two-replica correlation functionGab(q),

Fn52 1
2 Tr@ ln Gab~q!#1 1

2(
a

E
q
Gaa~q!g0

21~q!

2
D

2 (
a,b

E
q
Gab~q!Hn~^ca&!1Sn~Gab ,^ca&!,

~12!

whereg0
21 is the bare propagatorq21t, Hn(^ca&) is the

value of the effective Hamiltonian~10! at the function
ca(q) being equal tô ca(q)&, and Sn(Gab ,^ca&) is the
sum of two irreducible diagrams that cannot be separa
into two independent parts by removing any two lines. O
should note that only the diagrams with the numbers of lo
larger than the number of vertices contribute to the free
ergy of the system in the thermodynamic limitV→` due to
the additional factor 1/V in front of the term in the effective
Hamiltonian with vertexk. There is only one diagram in th
sumSn(Gab ,^ca&) that has the vertexk to the first power
@12,14,16#.
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The average value of the order parameter^ca(q)& is
equal to zero above the microphase separation transitio
replica symmetric solution for the renormalized two-repli
correlation functionGab(q) can be written as a sum of tw
terms

Gab~q!5g~q!dab1 f ~q!~12dab!, ~13!

whereg(q) and f (q) are functions to be defined below. Su
stituting the functionGab(q) given by Eq. ~13! into the
right-hand side~rhs! of the Eq. ~12! and taking the varia-
tional derivative of then-replica free energy with respect t
functionsg(q) and f (q), one can write the system of equa
tions

dFn

dg~q!
52@g~q!2 f ~q!#211

f ~q!

@g~q!2 f ~q!#2
2D1g0

21~q!

1Saa50,
~14!

dFn

d f ~q!
5

f ~q!

@g~q!2 f ~q!#2
2D1Sab50,

where Saa52@dSn(Gab ,^ca&)/dg(q)# and Sab
52@dSn(Gab ,^ca&)/d f (q)#. In the one-loop~Hartree! ap-
proximation the system~14! reduces to the form

@g~q!2 f ~q!#215g0
21~q!1

l

2 E
q1

g~q1!1
k

2 E
q1

g~q1!

q21q1
2 ,

~15!
f ~q!5D@g~q!2 f ~q!#2.

To solve Eq.~15! we will use a trial function method and
choose the function@g(q)2 f (q)#21 in the form gB

21(q)
5C(uqu2q* )

21r @12,14,16#, where the parameter
C,r ,q* have to be found self-consistently. Substitution
this trial function into the rhs of Eq.~15! results in the equa-
tion

C~ uqu2q* !21r5q21t1F lq
*
2

4pACr
1

kq
*
2

4pACr
1

q21q
*
2 G

3F11
D

2r G . ~16!

Expanding the rhs of this equation in the Taylor series in
powers ofuqu2q* , we can self-consistently define the p
rametersC,r ,q* as

C52, ~17a!

q
*
2 5

sk

Ar
F11

D

2r G , ~17b!

r5t14
ls

Ar
ks

Ar
F11

D

2r G
2

13
ks

Ar
F11

D

2r G , ~17c!

where the numerical constants51/16p& was introduced.
The analysis of the system~17! shows that the value of the
critical wave numberq* in the case of the strong random
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56 753MICROPHASE SEPARATION TRANSITION OF RANDOM . . .
field (D/r.1) is proportional toD/r 3/2. In order to find the
temperature dependence we have to substituter 3

;lks2D2/utu into Eq. ~17b!, which gives the value of the
critical wave numberq

*
2 ;A(k/l)utu. In the other limit

utu;ks/r the characteristic length scale of the critical flu
tuationsL;q

*
21 is inversely proportional to the square ro

of the effective temperature 1/Autu.
To simplify the analysis of the system~17! it is useful to

introduce the reduced variables such asz5r /sAkl, d
5D/sAkl, andt5t/sAkl. In these variables we can writ

t5z2
4

z F11
d

2zG
2

23
k1/4

s1/2l3/4Az
F11

d

2zG . ~18!

The parameterk1/4/s1/2l3/4 is proportional tol 1/4, and de-
pending on the length of the blocksl either the second or th
third term gives the main contribution at smallz on the rhs of
Eq. ~18!. The fluctuations stabilize the disordered state for
effective temperatures as can be seen from Eq.~18!. How-
ever, the absence of the instability does not preclude
existence of a first-order phase transition into a domain st
ture with a period of the order of length scaleL. In order to
decide whether such a transition may occur we have to
culate the free energy of the ordered state.

The ordered phase is characterized by a nonzero ave
value of the order parameter^ca(q)& that describes averag
composition fluctuations in the domains. In the weak seg
gation limit, for a lamellar domain structure with amplitud
A and periodL52p/q* oriented along thez axis the aver-
age value of the order parameter has the form

^ca~q!&5A@d~qz2q* !1d~qz1q* !#. ~19!

Repeating the above calculations for the ordered phase,
can derive the system of equations

C52,

q
*
4 2q

*
2 sk

Ar
F11

D

2r G2
k

2l
r50,

~20!

A25
2r

l
,

2t5z1
2

z F11
d

2zGF F11
d

2zG1AF11
d

2z
G 212z2G

13
k1/4

s1/2l3/4 F F11
d

2zG
Az

1
z3/2

F11
d

2zG1AF11
d

2zG
2

12z2
G .
ll

e
c-

l-

ge

-

ne

In the case of the strong random fieldd/z.1 the last Eq.
~20! of the system~20! can be simplified

2t5z1
d2

z3
1
3

2

k1/4

s1/2l3/4

d

z3/2
. ~21!

The solution of Eq. ~21! appears atzc'31/4d1/2 for

k1/4/s1/2l3/4d1/4,1 and atzc'@( 94 (k
1/4/s1/2l3/4)d#2/5 if the

opposite inequality holds. Here we will be interested only
the first case. Substituting the solutionzc'31/4d1/2 into Eq.
~21!, one can obtain the critical temperature or spinodal
the ordered phase

tc'2
4

33/4
d1/2. ~22!

Note that the precise analysis of the phase transition betw
the ordered and the disordered phases shows that the
perature of the first-order phase transition has the sa
power dependence on the parameterd as the critical tempera
ture tc . To conclude our analysis of the phase transition
the random copolymer systems in a gel we have to check
stability of the replica symmetric solution.

III. STABILITY OF THE REPLICA SYMMETRIC
SOLUTION

To consider the stability of the replica symmetric soluti
we have to expand the free energy of the system in power
dQab(q), which is a small perturbation over the replic
symmetric part of the two-replica correlation functio
Gab(q) @see Eq.~13!# and check the sign of the quadratic
the perturbation term. In this approximation the two-repli
correlation function can be written in the form

Gab~q!5gB~q!dab1DgB~q!2ea
Teb1dQab~q!, ~23!

wheree is the unit vector~1,1,...,1! of dimensionn. Substi-
tuting this functionGab(q) into rhs of Eq.~12! and expand-
ing it in powers of the matrixdQab(q) one can find

DFn5
V

4 F E
q
S dgn

gB~q!2
22

D

gB~q!
eg
TenD dQag~q!dQan~q!

2
l2

2 E
q
E
k
E
p
dQab~p!dQab~k! f ~q! f ~q2k2p!G ,

~24!

where on the rhs we have assumed the summation ove
repeated indices and have neglected terms of the orde
n2. The form of the perturbationdQab(q) can be found by
analyzing the Dyson equation for the off-diagonal part of t
two-replica correlation function. One can easily see that
fluctuations withuqu5q* give the main contribution to this
function, so at the zeroth-order approximation the funct
dQab(q) can be chosen in the form

dQab~q!5QabgB~q!2, ~25!

whereQab is then3n matrix with elements satisfying the
symmetry relation(aQab5(gQgd . After introducing the
Parisi function@25# q(x) defined in the interval@0,1#,
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754 56ANDREY V. DOBRYNIN
E
0

1

qk~x!dx5 lim
n→0

1

n~n21! (
a,b

Qab
k ; k, ~26!

the quadratic part of the free energy in the powers of
matrixQab can be rewritten as

DF52
V

4 H E
0

1E
0

1

@~ I 12I 3!d~x2y!1I 2#q~x!q~y!dx dyJ ,
~27!

where we have defined

I 15E
q
gB
2~q!5

q
*
2

4pAC
r23/2, ~28!

I 35
1

512p2C2 l2D2q
*
5 r26, ~29!

I 252DE
q
gB
3~q!5

3

8pAC
q
*
2 Dr25/2. ~30!

The replica symmetric solution~13! is unstable in the region
of the parameters where the matrix (I 12I 3)d(x2y)1I 2 has
a negative eigenvalue

l25I 11I 22I 3,0. ~31!

In terms of the variablesD and r expression~31! becomes

l2}S 11
3

2

D

r
2

l2q
*
3

64pC3/2

D2

r 9/2D<0. ~32!

Equation ~32! determines the spinodal line of the replic
symmetric solution with respect to replica symmetry bre
ing. In the dimensionless variables this equation can be
written as

l2}11
3

2

d

z
2

l3/8

8s3/4k1/8

d2

z21/4 S 11
d

2zD
3/2

<0. ~33!

In the case of the weak random fieldd/z<1 the second term
on the rhs of Eq.~32! can be neglected, leading to

zsp'S l3/8

8s3/4k1/8D 4/21d8/21, d<S l3/8

8s3/4k1/8D 4/13. ~34!

Extrapolating Eq. ~32! to large d, d/z>1, or d
.(l3/8/8s3/4k1/8)4/13, one can obtain

zsp'S l3/8

24&s3/4k1/8D 4/23d10/23, d.S l3/8

8s3/4k1/8D 4/13.
~35!

In order to find the effective temperature of the phase tr
sition these values of the renormalized effective tempera
zsp have to be substituted into expression fort(z) given by
Eq. ~21!. An analysis of this equation shows that the ins
bility of the replica symmetric solution can only occur at t
intermediate values of the external random fieldd. This is
due to the fact that for strong random fieldsd
e

-
e-

-
re

-

.(l3/8/8s3/4k1/8)4/13 the spinodal temperaturetsp decreases
faster (tsp;2d16/23) than the temperature of the first-ord
phase transitiont tr;2d1/2.

IV. RANDOM COPOLYMERS BELOW THE MICROPHASE
SEPARATION TRANSITION

In this section we consider the stability of the doma
structure below the microphase separation transition. Let
layers at the pointr in the domain structure undergo a flu
tuation displacementu(r ) in the z direction. If the fluctua-
tionsu(r ) vary only slightly over distances of the order of
layer spacingL'1/q* , the changes in composition at eac
point in space may be regarded as the result of a shift of
layers by an amount equal to the local fluctuation of t
displacementu(r ). The fluctuating composition is then writ
ten

c~r !52A cos$q* @z1u~r !#%. ~36!

Substituting this formula for the order parameter into t
effective Hamiltonian~10!, one can derive the coarse-graine
effective Hamiltonian for the fieldsua(r ),

H„$ua~r !%…5
kA4

8q
*
4 S (

a
E
r
$@Dx,yua~r !#2

14q
*
2 @¹zua~r !#2% D

2(
a,b

DE
r
cos$q* @ua~r !2ub~r !#%,

~37!

where the first term on the rhs describes the deformation
the lamellar layers and the second one couples this defor
tion in different replicas. It is interesting to note that th
cosinelike coupling term between fluctuations of the ord
parameter in two different replicas appears in disorde
physical systems such as an array of flux line in type-II
perconducting film in magnetic field@26#, a crystalline sur-
face with a disordered substrate@27#, random fieldXYmodel
@28#, and copolymers in a gel@18#. In all these systems the
cosine term results in a break of the long-range order an
the spontaneous replica symmetry breaking@29,30#.

In the framework of the Gaussian variational princip
@31,30# the contribution to the free energy of the system d
to fluctuations of the displacementua(r ) in different replicas
is

Fvar52 1
2 TrE

q
ln@Gab~q!#1^H„$ua~q!%…2H0&0 ,

~38!

where we defined

H05
1
2(
a,b

E
q
Gab

21~q!ua~q!ub~2q! ~39!

andGab
21(q) is the two replica trial function whose form ha

to be found self-consistently. Thê&0 denotes the therma
averaging with the weight exp(2H0). After thermal averag-
ing the variational free energy reads
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Fvar

V
52 1

2 TrE
q
ln@Gab~q!#1 1

2SpE
q
@G0

21~q!dab

2Gab
21~q!#Gab~q!2 (

bÞa
DAaAb expS 2

q
*
2

2
BabD ,

~40!

where

Bab5E
q
@Gaa~q!1Gbb~q!2Gab~q!2Gba~q!# ~41!

and the inverse bare propagatorG0
21(q) is (A2/2)@(qy

2

1qx
2)214q

*
2 qz

2#, where we substituteA25kA4/2q
*
4 . The

trial functionGab(q) can be found from the equations

Gaa
21~q!5G0

21~q!12(
aÞb

Dq
*
2AaAb expS 2

q
*
2

2
BabD ,

~42!

Gab
21~q!522Dq

*
2AaAb expS 2

q
*
2

2
BabD . ~43!

Analyzing Eq. ~43! one can conclude that the functio
Gab

21(q) does not depend on wave numberq for aÞb. So we
can defineGab

21(q)52sab (aÞb). In the case of the one
step replica symmetry breaking for which the elements of
matrix sab are assumed to have two different valuess0 and
s1 depending on whether or not the two indicesa and b
belong to the same blocks of lengthm, one can rewrite the
equations~see for details@30#!

s15Y exp~h ln t !, ~44!

s05Y expS h ln t2
1

m
~2h ln Lq*1h ln t ! D , ~45!

whereL is the linear size of the system and we introduc
the following parameters assumingAa to be the same in the
all replicas and equalA:

h5
q*

16pA2 , t52
m~s12s0!

A2q
*
4 , Y52Dq

*
2A2. ~46!

In the limit Lq*@1 Eq. ~45! gives s050. Therefore, the
trial functionGab(q) is

Gaa~q!5
1

G0
21~q!1ms1

1
s1

G0
21~q!@G0

21~q!1ms1#
,

~47!

Gab~q!5
s1

G0
21~q!@G0

21~q!1ms1#
~48!

for a,bPdiagonal blocksm3m, and

Gab~q!50 ~49!
e

d

for a,bPoff-diagonal blocksm3m. Substitution of the
solution ~47!–~49! for the trial functionGab(q) into varia-
tional free energy yields@30#

f var5 lim
n→0

1

n
@Fvar~ t !2Fvar~0!#

5
VA2q

*
2

4 F S 12
1

mDht1Y8~12m!thG , ~50!

where Y852Y/A2q
*
4 54D/q

*
2 is introduced. The equilib-

rium values of the parametersm andt can be found from the
system of equations

1

m2 ht2Y8th50, ~51!

S 12
1

mD1Y8~12m!th2150. ~52!

For h.1 this system has only a trivial solutionm51, t
50 that corresponds to the replica symmetric solution w
all off-diagonal elements of the matrixGab(q) equal to zero.
The nontrivial solution appears forh<1, which reads

m5h, ~53!

t5~Y8h!1/~12h!. ~54!

In other words, ath51 the system undergoes a phase tra
sition for which the correlation functionGab(q) change its
form.

To complete the analysis we now calculate the correlat
function ^c(r )c(r 8)& in the ordered phase below the pha
transition (h,1). Due to fluctuations of the displaceme
u(r ) the correlation function is

^c~r !c~r 8!&}A2 cos@q* ~z2z8!#

3expS 2
q
*
2

2
^@u~r !2u~r 8!#2& D , ~55!

with

^@u~r !2u~r 8!#2&52E
q
$12cos@q~r2r 8!#%^u~q!u~2q!&.

~56!

Substituting expression for the correlator^u~q!u~2q)&,
which is given by the diagonal part~47! of the two-replica
correlation function, one can write

^@u~z!2u~z8!#2&

5
2

q
*
2 H ~12h!ln t12 lnuz2z8uq* for uz2z8ujz

21.1

2h lnuz2z8uq* for uz2z8ujz
21<1

~57!

for ux'2x'8 u50 and

^@u~x'!2u~x'8 !#2&
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5
2

q
*
2 H ~12h!ln t14 lnux'2x'8 uq* for ux'2x'8 ujx

21.1

4h lnux'2x'8 uq* for ux'2x'8 ujx
21<1

~58!

for uz2z8u50, wherejzq*5t21/2 and jxq*5t21/4 are the
correlations lengths in thez andx and they directions, re-
spectively. The form of the correlation function shows th
there are two different regions. Inside the domains of s
ux'2x'8 u,jx anduz2z8u,jz the system behaves like sme
tic A @32#. For the larger distances the fluctuations of t
layer displacementu(r ) destroy the modulated order, whic
results in the formation of the highly anisotropic translation
incoherent microstructures withjz /jx;D21/4(12h). Thus, in
random copolymers in a gel there is only short-range tra
lational order with correlation lengthsjz ,jx .

V. CONCLUSION

We have considered the behavior of the random cop
mers in a gel and have shown that this problem can be
duced to the random field model with the correlation pro
erties of the random field fixed during the process of a
synthesis. To illustrate our predictions we calculate the ph
diagram of the system~see Fig. 1!. As one can see from Fig
1 that the temperature of the first-order phase transition f
the homogeneous state to the lamellar phase decreases
increasing strength of the random fieldd. This result can be
understood using simple Imry-Ma arguments@33#. The sta-
tistical fluctuations of the random field will produce the com
position fluctuations in the regions with a higher concent
tion of cross links

FIG. 1. Phase diagram for the random copolymer melt in the
in the variables (t,d) at k5l51. The solid line between the ho
mogeneous state~DIS! and replica symmetry breaking regim
~RSB! is the spinodal line of the replica symmetric solution for t
two-replica correlation function with respect to replica symme
breaking. The solid line between the homogeneous state and
lamellar phase~LAM ! as well as between the RSB phase and
lamellar phase is the line of the first-order phase transition.
t
e

l

s-

-
e-
-
l
se

m
ith

-

c~q!5G~q!h~q!. ~59!

In order for the domain structure to be distinguished fro
these background statistical fluctuations, the amplitude of
composition fluctuations between different domainsA
'Autu/l has to be larger than the statistical fluctuations
the order parameter

A^c2&'AE
q
G2~q!^h~q!h~2q!&'A D

kutu
. ~60!

This gives the estimate of the temperature of the first-or
phase transitionutu'AD that reproduces the scaling depe
dence derived in Sec. II.

At some intermediate strength of the random field~or the
adsorption energy! above the line of the first-order phas
transition, there is a region of the phase diagram with rep
symmetry breaking~RSB! for the two-replica correlation
function. This means that in this region the pattern of copo
mer composition fluctuations is pinned to the frozen inhom
geneity of the gel and the properties of the system beco
dependent on the preparation conditions of the gel. Be
the microphase separation transition there is only short-ra
translational order with correlation lengthsjz ,jx . All our
predictions can be tested by the x-ray scattering experime
We hope that this work will stimulate such experiments. It
very interesting to note that qualitatively the phase diagr
~Fig. 1! looks very similar to that calculated by Stepano
et al. @18# for symmetric diblock copolymers in a gel.

Let us comment on the case of asymmetric random
polymers containing an unequal numbers ofA andB mono-
mers. In this case there is a cubic term in the effect
Hamiltonian. As a result, there will be a region on the pha
diagram with three- and two-dimensional domain structu
@34,35#. However, the general prediction of the paper is th
the breaking of the replica symmetry of the two-replica c
relation function will not be affected by the cubic term in th
effective Hamiltonian.

Recently, Panyukov and Rubinstein@36# have considered
the behavior of a network prepared by cross linking the m
ture ofA andB chains. This is another way of breaking th
translational invariance of the system. They have shown
cross links prevent a microphase separation and chains
only form domains on the microscopic length scales of
order of network mesh size. The physical reason for suc
phenomenon is the existence of the random stress in a
work. These random forces acting on the microstructure
stroy the long-range modulated order. The destruction of
long-range order in the network is different from that d
cussed in the present paper. The quenched random field
external perturbations of the copolymer melts, while the r
dom forces are intrinsic ingredient of the network.

Another possible application of our theory is to the pro
lems of the freezing transition of proteins in random me
@37# or the protein adsorption on the substrate with random
distributed attractive centers@38#. We hope that this pape
will stimulate work in this direction.
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